Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC
نویسندگان
چکیده
The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria.IMPORTANCE The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of LpxC inhibitors against a wide variety of Gram-negative bacterial infections, including the most severe ones caused by Y. pestis and by multidrug-resistant and extensively drug-resistant carbapenemase-producing strains.
منابع مشابه
Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis.
Multi-drug resistant (MDR), pathogenic Gram-negative bacteria pose a serious health threat, and novel antibiotic targets must be identified to combat MDR infections. One promising target is the zinc-dependent metalloamidase UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC), which catalyzes the committed step of lipid A (endotoxin) biosynthesis. LpxC is an essential, single c...
متن کاملMutants resistant to LpxC inhibitors by rebalancing cellular homeostasis.
LpxC, the deacetylase that catalyzes the second and committed step of lipid A biosynthesis in Escherichia coli, is an essential enzyme in virtually all gram-negative bacteria and is one of the most promising antibiotic targets for treatment of multidrug-resistant gram-negative infections. Despite the rapid development of LpxC-targeting antibiotics, the potential mechanisms of bacterial resistan...
متن کاملInhibition of LpxC Protects Mice from Resistant Acinetobacter baumannii by Modulating Inflammation and Enhancing Phagocytosis
UNLABELLED New treatments are needed for extensively drug-resistant (XDR) Gram-negative bacilli (GNB), such as Acinetobacter baumannii. Toll-like receptor 4 (TLR4) was previously reported to enhance bacterial clearance of GNB, including A. baumannii. However, here we have shown that 100% of wild-type mice versus 0% of TLR4-deficient mice died of septic shock due to A. baumannii infection, despi...
متن کاملTazocin (Piperacillin-tazobactam) Susceptibility Pattern in Nosocomial Infections
Background & Aims: Utility of antibiotics, such as third and fourth generation of cephalosporins and carbapenems, and resistance to these antibiotics in hospital acquired infections are increased. There are scientific data that support the application of Tazocin (piperacillin-tazobactam) as an empirical treatment of moderate to severe bacterial infections. In our area there is not much informat...
متن کاملAntibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(r-3-hydroxymyristoyl)-n-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs.
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the second step in the biosynthesis of lipid A, a unique amphiphilic molecule found in the outer membranes of virtually all Gram-negative bacteria. Since lipid A biosynthesis is required for bacterial growth, inhibitors of LpxC have potential utility as antibiotics. The enzymes of lipid A biosynthesis, including Lpx...
متن کامل